Huaiyu Wei

Los Angeles, CA | hywei@atmos.ucla.edu | (310) 696-3887

My website | Google Scholar | ResearchGate | GitHub

Employment

University of California, Los Angeles (UCLA)

Feb. 2024 - Present

Postdoctoral Researcher, Advisor: Prof. Andrew Stewart

Education

The Hong Kong University of Science and Technology (HKUST)

Aug. 2019 - Feb. 2024

Ph.D. in Marine Environmental Science, Advisor: Prof. Yan Wang

Thesis: Parameterizing Mesoscale Eddy Fluxes across Continental Slopes

Sun Yat-sen University (SYSU)

Sep. 2015 - July 2019

B.S. in Physical Oceanography, Advisor: Prof. Zhan Hu

Thesis: Laboratory study on Wave dissipation by vegetation in combined current wave flow

Boston University May 2023 – Aug. 2023

Visiting student, Advisor: Prof. Xiaozhou Ruan

University of British Columbia

July 2017 - Aug. 2017

Vancouver Summer Program, Best presentation award

Research Interests

Geophysical fluid dynamics; Eddy dynamics over sloping seafloor; Eddy parameterization; Meridional overturning circulation; Machine learning

Publications

<u>Wei, H.</u>, Stewart, McWilliams, J., A., Capó, E. Formation of Abyssal Downwelling-Favorable Prograde Flows via Mesoscale Eddy Potential Vorticity Mixing: Dependence on Environmental Parameters. In preparation (Preprint available upon request).

Wei, **H.**, Srinivasan, K., Stewart, A., Solodoch, A., Manucharyan, G., Hogg, A. Full-depth reconstruction of long-term Meridional Overturning Circulation variability from satellite-measurable quantities via machine learning. Submitted.

- 1. Li, D., Wei, H., & Ruan, X. (2025). The importance of eddy stirring in wind-driven coastal upwelling. *Journal of Physical Oceanography*, 55(1), 29-42.
- 2. Wei, H., Wang, Y., & Mak, J. (2024). Parameterizing eddy buoyancy fluxes across prograde shelf/slope fronts using a slope-aware GEOMETRIC closure. *Journal of Physical Oceanography*, 54(2), 359-377.
- 3. Xie, C.*, Wei, H.*, & Wang, Y. (2023). Bathymetry-aware mesoscale eddy parameterizations across upwelling slope fronts: A machine learning-augmented approach. *Journal of Physical Oceanography*, 53(12), 2861-2891. (*Contributed equally)
- 4. Xie, C., Wei, H., & Wang, Y. (2023). Impact of parameterized isopycnal diffusivity on shelf-ocean exchanges under upwelling-favorable winds: offline tracer simulations augmented by artificial neural network. *Journal of Advances in Modeling Earth Systems*, 15(4), e2022MS003424.
- 5. Wei, H., Wang, Y., Stewart, A. L., & Mak, J. (2022). Scalings for eddy buoyancy fluxes across prograde shelf/slope fronts. *Journal of Advances in Modeling Earth Systems*, 14(12), e2022MS003229. (Issue cover)
- 6. Hu, Z., Lian, S., Zitman, T., Wang, H., He, Z., Wei, H., et al. (2022). Wave breaking induced by opposing currents in submerged vegetation canopies. *Water Resources Research*, 58(4), e2021WR031121.
- 7. Wei, H., & Wang, Y. (2021). Full-depth scalings for isopycnal eddy mixing across continental slopes under upwelling-favorable winds. *Journal of Advances in Modeling Earth Systems*, 13(6), e2021MS002498. (Issue cover)

8. Hu, Z., Lian, S., Wei, H., Li, Y., Stive, M., & Suzuki, T. (2021). Laboratory data on wave propagation through vegetation with following and opposing currents. *Earth System Science Data*, 13(10), 4987-4999.

RESEARCH SUPPORT & FELLOWSHIP

"Reconciling diapycnal upwelling versus eddy-driven downwelling in the ocean's sloping bottom boundary layers" NSF proposal (submitted).

"Leveraging Machine Learning and Satellite Measurements to Predict Ocean Meridional Overturning Circulation" Explore ACCESS project.

2024-2026

Postgraduate Studentship, HKUST

2019-2024

Conference Experience

AGU 2024, Washington, D.C., US

Dec. 2024

Oral presentation: "Reconstructing Meridional Overturning Circulation from Satellite Measurements via Neural Networks"

Ocean Science Meeting 2024, New Orleans, US

Feb. 2024

eLightning presentation: "Parameterizing eddy buoyancy fluxes across prograde shelf/slope fronts using a slope-aware GEOMETRIC closure"

Ocean Transport and Eddy Energy Meeting 2023, WHOI, US

Teaching assistant in "Descriptive Physical Oceanography"

May 2023

Oral presentation: "Parameterization for Eddy Buoyancy Fluxes Across Prograde Shelf/Slope Fronts"

Ocean Science Meeting 2022, Online

Mar. 2022

Oral presentation: "Full-Depth Scalings for Isopycnal Eddy Mixing Across Continental Slopes Under Upwelling-Favorable Winds"

EGU 2018, Vienna, Austria

Apr. 2018

2021

Poster presentation: "The pattern and control of erodibility of cohesive sediments in a *Spartina alterniflora* marsh on the coast of Jiangsu, China"

Invited Talks

- 1. 'Reconstructing Meridional Overturning Circulation from Satellite Measurements via Neural Networks', Boston University ($20^{\rm th}$ Dec. 2024), MIT ($3^{\rm rd}$ Jan. 2025), UCLA AOS department Seminar ($19^{\rm th}$ Feb. 2025), and SNAP seminar ($24^{\rm th}$ Feb. 2025).
- 2. 'Parameterizing Eddy Mixing across Continental Slopes under Upwelling-Favorable Winds', Marine Center Spring Meeting, UCLA, $9^{\rm th}$ May 2024.
- 3. 'Parameterizing Isopycnal Eddy Mixing across Continental Slopes', AOS Ocean Seminar, UCLA, 9th Apr. 2024.

Selected Awards

RedBird Academic Excellence Award, HKUST	2023
Best Presentation Award, HKUST Postgraduate Seminar	2023
Outstanding Graduate, SYSU	2019
National Scholarship, China (Top 1%)	2018
The Giordano Scholarship, SYSU (Top 2%)	2017
The Coca-Cola Scholarship for Outstanding Students, SYSU (Top 5%)	2016
Teaching Experience	
Guest lecturer in graduate Geophysical Fluid Dynamics at UCLA - Tides	2025
Guest lecturer in undergraduate Physical Oceanography at UCLA - Tides	2024
Teaching assistant in "Survey of Ocean Science"	2022

Additional Information

Journal reviewer: Nature Communication, Journal of Advances in Modeling Earth Systems, Journal of Physical Oceanography, Geophysical Research Letters, Ocean Modelling.

Language Skills: Mandarin (Native), English (IELTS score: 7.5).

Computer programming: Fortran, MATLAB, Python.